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ABSTRACT 

To detect doping with endogenous steroids, such as testosterone, biomarkers in urine are 

measured. These biomarkers include testosterone and some metabolically related steroids. The 

measured steroids are combined into ratios and together they make up the steroid profile. This 

steroid profile is followed over time in the Steroid Module of the Athlete Biological Passport. 

The software used for the passport, calculates individual reference ranges based on the previous 

results and gives atypical findings if one or more biomarker goes outside of the reference 

ranges.  

All passports are evaluated by experts and all atypical findings are assessed. Evaluating 

steroidal passports is however difficult since factors, other than doping, can affect the 

biomarkers of the steroid profile. In this thesis, we evaluated natural variations of the steroid 

profile, including variations during the menstrual cycle and pregnancy, as well as how certain 

drugs, such as hormonal contraceptives and testosterone, affect the steroid profile.  

In a study of over 11 000 steroid profiles we have seen that intra-individual variation in the 

steroid profile is large (16-27% in men and 23-40% in women), but that inter-individual 

variation is larger (49-76% in men and 55-84% in women). Some of this variation could be 

explained by annual and diurnal variation, with time of day having a larger impact on makers 

of the steroid profile. Another confounder to consider when evaluating passports is if the urine 

was collected in competition or not, a factor that could explain over 6% of the total inter-

individual variation of some ratios. We have also seen that the menstrual cycle affect 

biomarkers of the steroid profile and that hormonal contraceptives can give patterns on the 

steroid passports similar to micro-doping with T. Pregnant women also show great differences 

in their steroid profiles as compared to non-pregnant women.  

We have seen that doping with as low as 125 mg T enanthate and 100 mg T gel can be detected 

with the ABP. However, it is possible that the large natural variation as well as confounding 

factors, such as permitted drugs, will conceal the effect of doping. 

The goal of studying confounding factors in steroid profiling is to provide the scientists 

evaluating the passport with sharper tools, not only to select the profiles suspicious of doping, 

but also to be able to reject and not spend unnecessary time and resources on profiles showing 

atypical results due to natural causes. The ultimate goal is to be able to proceed with a passport 

case, where the steroidal passport is the only evidence of doping. 
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1 PREFACE 

Steroid profiling is the current method in doping analysis for detecting the use of steroids 

identical to endogenous steroids, e.g. Testosterone (T). In steroid profiling, several steroids that 

are metabolically related to T are measured and followed over time in the Athlete Biological 

Passport (ABP). Testing for substances identical to those of endogenous origin is challenging 

since they by definition already exist in the body. To longitudinally study the steroid profile 

and look for atypical patterns has proven to be a sensitive way to detect these substances. 

However, steroid levels fluctuate naturally and are affected by internal as well as external 

factors. Consequently, the steroid profiles are not easy to interpret and it is of interest for those 

evaluating the profiles to know the extent of these variations, what they depend on and how 

they change when someone is doping with T.  

This thesis investigates the stability of the steroid profiles during different conditions. In the 

first part of this thesis (Study I and II), low doses of testosterone were administered to healthy 

men and the steroid profile was longitudinally monitored. In Study I, three doses of T enanthate 

were injected to 25 healthy subjects and in Study II, a one-time dose of T gel was given to 8 

subjects. In the second part of this thesis (Study III-V), the steroid profile was studied in women 

in relation to hormonal contraceptive use (Study III), menstrual cycle and emergency 

contraceptive use (Study IV) as well as during pregnancy (Study V). Lastly, the general 

stability of the steroid profile was investigated in a large population of athletes (Study VI).  

For purposes of this thesis, “exogenous” refers to a substance which is not naturally produced 

by the body, whereas “endogenous” refers to a substance which is naturally produced by the 

body, even when administered externally (i.e. T). 
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2 INTRODUCTION 

2.1 TESTOSTERONE DOPING 

T and its synthetic analogues, which together make up the group of anabolic androgenic 

steroids (AAS), are included in the World-Anti Doping Agency (WADA) list of prohibited 

substances. For a substance to be included on the list of prohibited substances it has to meet at 

least two of the following three criteria (i) it has the potential to enhance sport performance, 

(ii) it represents an actual or potential health risk to the Athlete and (iii) the substance violates 

the spirit of sport [4]. T meets all three of these criteria.  

(i) T enhances sports performance primarily by inducing muscle mass and strength [5-

7]. Supraphysiological doses of T are known to increase fat-free mass, muscle size 

and strength especially when combined with strength training [8, 9]. Whereas lower 

doses of T and AAS are used in endurance sports for improved recovery. Low doses 

of T work to replace the T lost after overtraining-induced stress and play an 

important role in the regeneration of muscles after physical exercise [10]. In 

addition, T increases the activity of glycogen synthase, helping to refill the 

glycogen storage in the muscles [11].   

(ii) AAS have been linked to multiple severe adverse effects. Cardiovascular side 

effects for AAS include morphological and functional changes of the heart, 

enhanced pro-thrombotic state as well as increased risk of coronary artery disease 

and life-threatening arrhythmia ([12] – and references therein). Behavioural side 

effects include aggression and violence [13], possibly reflecting connectivity 

reductions of brain networks [14]. There are also adverse endocrine effects of AAS 

including infertility [15]. The studies investigating side effects are often listing 

AAS as one group, not specifying T induced side effects. Some side effects might 

be specific for certain AAS but the effects of overstimulating the androgen 

receptors should hold true for supraphysiological doses of T. For example, just one 

single dose of 500 mg T enanthate increased total cholesterol [16] and seem to 

induce endothelial dysfunction [17] so it doesn’t seem far-fetched that continuous 

use increases the risk of vascular disease.  

(iii) Athletes who take T seek to gain an unfair advantage over their competitors, which 

undermines their competitors’ hard work and therefore violates the spirit of sports. 

According to the Code issued by WADA, the sprit of sport is “the pursuit of human 

excellence through the dedicated perfection of each person’s natural talents” [4]. 

The purpose of the ban of T and other doping substances is to protect the athletes’ 

fundamental right to participate in doping-free sports and thus promote health, 

fairness and equality for athletes.  
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2.1.1 History of Testosterone as a drug 

The tremendous biological effect of the testes has been known since the antiquity. Because it 

was known that removal of the testes caused symptoms of hypogonadism, ingestion of testes 

and testicular extracts were recommended as a treatment for hypogonadism in the Roman 

Empire, in the 700’s Arabic medicine as well as in ancient China [18]. These remedies 

continued to be prescribed up into the twentieth century. However, these remedies certainly 

only had placebo effect at best. This is due to the fact that the testes do not store T and therefore 

contain a relatively low concentration of T [19]. In addition, the amount that was to be 

consumed would be inactivated during the first-pass metabolism in the liver.  

It was not until 1935 that T was isolated and synthesized [20, 21]. Soon thereafter T pellets 

became clinically available, then injectable esters and from the mid-1950’s the longer acting T 

enanthate appeared [18]. At this point the pharmaceutical industry started altering the chemical 

structure of the T molecule to increase its anabolic effect and decrease the androgenic effect, 

resulting in the making of the first AAS. In the late 1970’s, more than a 1000 different AAS 

had been described [18].  

All available preparations at this time resulted in unphysiologically high or low serum levels 

of T, leading to the development of new administration forms [18]. In the mid-1990’s T patches 

became available [22] and in the year of 2000, T gels entered the market [23]. Finally, in 2004, 

T undecanoate became available as intramuscular injections [24]. In parallel to this 

development of T for clinical use, was the introduction of these substances to healthy 

individuals to increase physical performance.  

2.1.2 Prevalence of Testosterone doping 

There is no reliable information on how common doping is, let alone doping with endogenous 

anabolic androgenic steroids (EAAS). In 2016, 1.6% of all tests issued under WADA showed 

an adverse analytical finding [25]. However, this includes all forms of doping and not all of 

these will end up being anti-doping rule violations since some of these adverse analytical 

findings are covered by therapeutic use exemption (TUEs). On the other hand, doping can only 

be detected for a limited time and sometimes not at all, so this is most likely an underestimation 

of the prevalence of doping among elite athletes. A retrospective study, investigating steroid 

profiles of 879 European professional football players, used a statistical approach to the 

question and they concluded that the prevalence of steroid doping within this group was 

undoubtedly lower than 7.7% [26]. When athletes of the 2011 World Championship in 

Athletics were asked in a survey if they had “knowingly violated anti-doping regulations by 

using a prohibited substance or method within the last year” more than 30% said yes, however, 

the kind of doping was not specified [27].  

Consequently, the prevalence of doping with AAS, or any other substance, is unknown and 

likely different in different countries and sports. However, as evident by the McLaren report 

about state-sponsored doping in Russia, there is no question that doping still remains a problem 

in sports and that most of it fails to be detected by today’s Anti-Doping regimes [28]. 
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2.2 ANDROGEN BIOSYNTHESIS, ACTION AND METABOLISM 

2.2.1 Androgen Biosynthesis 

Testosterone or androst-4-en-17β-ol-3-one, is a natural androgen formed by modification of 

the cholesterol molecule (Figure 2-1). T can be formed through different pathways, in humans 

the preferred route of T formation is via pregnenolone and DHEA [29]. T is produced at a rate 

of about 7 mg per day in men and around 0.1-0.4 mg per day in females [30, 31]. Serum 

concentrations of T are typically between 10-35 nmol/L for men and <3.5 nmol/L for women 

[32-34].  

In men, most of the natural production comes from the Leydig cells in the testes but a small 

amount also from the adrenal cortex [35]. In women, androgen production occurs in the ovaries, 

adrenal cortex and for pregnant women also in the placenta [30, 36, 37]. The adrenal cortex 

and ovaries however produce more androstenedione and DHEA, precursors of T, which are 

converted to T and the more potent dihydrotestosterone (DHT) in peripheral tissues [38-40]. In 

women, peripheral conversion from androstenedione contributes to about half of the circulating 

T, whereas approximately 25% each comes from ovarian and adrenal production [31, 41]. 

Virtually all T is bound to plasma protein - either strongly bound to sex hormone binding 

globulin (SHBG) or loosely to albumin [42]. 

2.2.2 Androgen Action and Regulation 

T has anabolic properties, increasing muscle mass and strength [5-9], as well as androgenic 

properties, increasing virilization. Androgens exert their effect by binding to the androgen 

receptor (AR), a nuclear receptor which, when activated, works as a transcription factor for 

several hundred genes [43-45]. This androgen-AR complex regulates transcription of muscle-

specific enzymes and structural proteins as well as noncoding RNAs, including regulatory 

microRNA [46]. Besides the genomic activity, there are non-genomic actions [47], such as 

rapid rise of intracellular calcium concentration in response androgens [48].  

Testicular and ovarian androgen production is stimulated by luteinizing hormone (LH) secreted 

from the anterior pituitary, which in turn is stimulated by gonadotropin-releasing hormone 

(GnRH) secreted from the hypothalamus upon neural signals from other parts of the brain 

(Figure 2-2). This so-called hypothalamus-pituitary-gonadal (HPG) axis is controlled through 

a negative feedback mechanism where elevated levels of endogenous steroids, including 

estrogens and progestogens, as well as exogenous steroids send signals to the hypothalamus 

and/or anterior pituitary to decrease the release of GnRH and/or LH.  
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Figur 2-1. Metabolic pathways of 

formation and metabolism of 

testosterone. The numbers correspond to 

the following enzymes. (Modified from 

[3]) 

1. Cytochrome P450 17 (CYP17)  

2. 3β-hydroxysteroid dehydrogenases 

(3β-HSDs) 

3. 17β-HSDs 

4. CYP19 (Aromatase) 

5. 5α-reductases 

6. 5β-reductase 
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The release of LH by the pituitary is pulsatile in both sexes, however, the levels remain more 

stable in men than women due to the cyclical release for women during the menstrual cycle. 

GnRH, LH, follicle-stimulating hormone (FSH), estrogen and progesterone are the major 

hormones responsible for the menstrual cycle with great variation at different stages of the 

cycle. Adrenal androgen production is at least in part modulated by adrenocorticotrophic 

hormone (ACTH) but other factors or hormones also exist, e.g. estrogens, growth hormone and 

gonadotropins [30, 49]. 

 

 

2.2.3 Androgen Excretion 

To be able to excrete steroids like T, the body has to 

convert this non-polar steroid to a more polar 

molecule, which can be excreted in urine. This is 

achieved through phase II metabolism where the 

steroids are conjugated mainly with glucuronic acid 

by Uridine 5'-diphospho-glucuronosyltransferases 

(UGT) [50], Figure 2-3. The steroids are also, but to 

a lesser extent, sulfated by members of the 

sulfotransferase (SULT) enzyme family [51]. 

 Figure 2-3 Testosterone glucuronide 

 

Figure 2-2. The regulatory feedback mechanism of steroids. The hypothalamus produces gonadotropin releasing hormone 

(GnRH) which stimulates the anterior pituitary to produce luteinizing hormone (LH) and follicle stimulating hormone 

(FSH). These hormones then stimulate the production of sex hormones in the gonads. The adrenal production of androgens 

is under control of adrenocorticotrophic hormone (ACTH) released from the anterior pituitary after stimulation of 

corticotropin-releasing hormone (CRH). The dotted line represents the negative feedback mechanism steroids have on the 

release of hormones from the hypothalamus and anterior pituitary.  
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2.2.4 Genetic Variability 

There are large inter-individual variations in the concentrations of steroids in urine, part of 

which can be explained by differences in serum concentrations but genetic differences in the 

metabolizing enzymes also play a role [52]. 

2.2.4.1 CYP17 

Cytochrome P450c17α (CYP17) is involved in the hydroxylation of pregnenolone and 

progesterone producing T (Enzyme 1 in Figure 2-1). CYP17 is also believed to be part of 

epitestosterone (E) formation [53, 54]. A polymorphism in the promoter region of the CYP17 

gene creates a putative Sp1 binding site in silico [55] which however could not be confirmed 

in vitro [56]. Caucasian (but not Korean) male subjects were shown to have higher urinary E 

levels if they were heterozygous or homozygous for the C-allele [54]. 

2.2.4.2 UGT2B17 

UGT2B17 is the major enzyme responsible for the phase II metabolism of T [57, 58]. The 

enzyme catalyzes the reaction to add a glucuronide group to the T molecule making it more 

water soluble (Figure 2-3). A deletion polymorphism in the UGT2B17 gene has been shown 

by Jakobsson et al. to be strongly associated with T excretion [59], explaining the T distribution 

seen in Figure 2-4.  

 

Figure 2-4. Testosterone distribution for Swedish and Norwegian men. A UGT2B17 deletion polymorphism is 

responsible for the bimodal distribution of urinary T excretion. Individuals with the double deletion of UGT2B17 

excrete low amounts of T and hence make up the first group in the distribution. (This figure was made in IBM SPSS 

Statistics 24 with data from Study VI.) 
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Jakobsson et al. also showed, that the UGT2B17 genotype distribution was significantly 

different between a Swedish and a Koreans population showing the Koreans were 7.2 times 

more likely to have the deletion/deletion (del/del) genotype [59]. All subjects with the del/del 

genotype had negligible amounts of T in the urine, whereas subjects with one or two copies 

(ins) of UGT2B17 showed up to several hundred times higher T concentrations. Although the 

different genotypes showed a substantial difference in urinary T concentration, there was no 

significant difference in serum concentrations of the steroid [60]. Men with the double deletion 

of UGT2B17 have shown to excrete more Etio-sulfate than insertion carriers [61]. 

2.2.4.3 UGT2B15 

T is also conjugated by UGT2B15 but to a lesser extent. UGT2B15 shows 96% identity with 

UGT2B17 but has broader substrate specificity [62]. There is a polymorphism in UGT2B15 

resulting in a change of aspartate (D) to tyrosine (Y) at position 85. No association between 

urinary T metabolite levels and the UGT2B15 D85Y polymorphism have been found [54, 63]. 

However, expression of UGT2B15 is increased in men with the double deletion of UGT2B17 

[54, 64].  

2.2.4.4 UGT2B7 

UGT2B17 has affinity for E but the enzyme will not catalyze the glucuronidation of E, rather 

UGT2B7 is the enzyme conjugating E, at least in vitro [58, 65]. UGT2B7 has poor affinity for 

T [66]. There is a common missense polymorphism in UGT2B7 where the histidine (H) amino 

acid is replaced by tyrosine (Y) at position 268, H268Y. This polymorphism does not have any 

significant impact on urinary androgen concentrations in Caucasian or Korean men [54].  

2.3 DETECTION OF DOPING WITH ENDOGENOUS STEROIDS 

As of today, the mass-spectrometric method used in routine doping control cannot distinguish 

between exogenous and endogenous steroids based on the mass spectrum. Therefore, doping 

with endogenous steroids presents a major difficulty in traditional doping tests. These hard-to-

detect steroids include T, its precursors (e.g. androstenediol, androstenedione and DHEA), 

DHT as well as E. To detect these banned substances, concentrations of the following steroids 

are measured in urine: T, E, androsterone (A), etiocholanolone (Etio), 5α-androstan-3α,17β-

diol (5αAdiol) and 5β-androstan-3α,17β-diol (5βAdiol). In the sample preparation procedure 

before injection to the GC-MS(/MS), the urine is hydrolyzed with β-glucuronidase. As a 

consequence, it is the unconjugated as well as the glucuronidated fractions that are quantified.  

Instead of using concentrations of steroids, ratios are used because they have proven to be more 

stable as well as more sensitive to doping [3]. The use of biomarker ratios rather than individual 

concentrations also bypasses the problem of fluctuations of steroid concentrations caused by 

variations in urinary flow rate. Therefore, the steroid concentrations are combined into the 

ratios T/E, 5αAdiol/5βAdiol, A/Etio, A/T and 5αAdiol/E. 
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2.3.1 Biomarkers of the Steroid Profile 

2.3.1.1 Epitestosterone (E) 

Epitestosterone (E), or 17α-hydroxy-4-androsten-3-one, is an isomer of T that differs from T 

in the configuration at the C17 position (Figure 2-5). It is formed in parallel with T although 

the exact paths of biosynthesis are unknown [67]. One putative precursor is epiandrostenediol 

(androst-5-ene-3β,17α-diol) which would be converted to E by 3βHSD [68, 69]. Another 

possible precursor is androstenedione, but the biosynthesis contribution from androstenedione 

is believed to be minimal [70, 71]. The interconversion of T and E is negligible, if any [70]. 

The daily production of E is only 3% of that of T and most of it is likely formed in the testes 

although part of the production probably occurs in the adrenal gland since administration of 

ACTH significantly increases urinary E concentration in healthy men [70, 72]. Even though 

the production is only a few percent of that of T, due to poor phase I metabolism of E in man, 

the excretion rate is 30-50% of that of T [70]. 

Unlike T, very little is known about E physiological role but on the basis of animal experiments, 

it has been suggested to have anti-androgenic effect thus being able to modulate the androgenic 

effects mediated via the androgen receptor [67]. Nevertheless, E has a central role in doping 

testing since the administration of T suppress the excretion rate of E [73, 74]. E regarded as a 

masking agent and is prohibited in sports as its administration in combination with T at a dose 

ratio of approximately 1:30 results in a stable T/E ratio [75]. 

 

Figur 2-5. Chemical structure of testosterone (to the left) and epitestosterone (to the right). 

2.3.1.2 T/E ratio 

The T/E (testosterone to epitestosterone) ratio is the most sensitive ratio currently used to detect 

administration of T and the most important parameter of the steroid profile. The T/E ratio is 

sensitive to doping since T increases with administration of T, and E decreases. When this ratio 

was implemented as a biomarker in 1983, an upper limit of 6 was set based on population 

studies, but the cut off ratio was lowered to 4 in 2004. Using a population-based threshold for 

T/E has shown to be ineffective since some people naturally have higher T/E than 4 (resulting 

in increased risk of false positives) whereas others have such low T/E values that they never 

can reach the cut-off value even after T injections (resulting in false negatives) [62, 76]. 
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2.3.1.3 5αAdiol/5βAdiol 

5αAdiol and 5βAdiol are Phase I metabolites of T and are formed from DHT and 5β-DHT, 

respectively (Figure 2-2). After DHT, 5αAdiol is the most potent metabolite, but not quite as 

potent as T, whereas 5βAdiol shows no androgenic activity [77]. When administering T, the 

levels of both diols increase but depending on the administration route or steroid administered 

the diols change differently leading to changes in the 5αAdiol/5βAdiol ratio. This ratio is 

especially sensitive to transdermal T administration due to high levels of 5α-reductase in the 

skin, favoring the 5α-route of metabolism [78, 79]. Also, DHT administration leads to an 

increase in 5αAdiol/5βAdiol [80], since DHT is a precursor of 5αAdiol (Figure 2-1). 

2.3.1.4 A/Etio 

A and Etio are end products of the Phase I metabolism of T and hence, can be detected in high 

amounts in urine. A is produced from 5αAdiol and has some androgenic activity, whereas Etio 

is produced from 5βAdiol and has no androgenic activity [77]. The ratio between these steroids 

is just like 5αAdiol/5βAdiol sensitive to detect application of DHT and transdermal T.  

2.3.1.5 A/T 

The A/T ratio was earlier used as T/A, switching the numerator and denominator lead to easier 

values (not as many decimals needed). However, when an A/T ratio shows suspicious signs of 

doping it is low as compared to the other ratios that are higher than normal after intake of 

steroids. The usefulness of this ratio has been discussed. 

2.3.1.6 5αAdiol/E 

5αAdiol/E is the newest addition to the steroid profile and was introduced after Geyer et al. 

found this ratio to be the most sensitive for T gel detection [79]. It is believed to be useful for 

detection of all transdermal T preparations as well as DHT. 

2.3.2 Traditional Testing 

Here the meaning of traditional testing refers to the way of analyzing the results before the 

steroidal module of the ABP was established. This is still the method used for athletes tested 

only once. Note that these thresholds were set by WADA and therefore only refer to doping 

control regulated by WADA, i.e. for athletes. In traditional testing, each athlete’s steroid 

concentrations and ratios are compared to population-based reference ranges. According to 

traditional testing, the sample’s steroid profile is suspicious if any of the following criteria are 

met [2]: 
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This method of looking at the steroid profile is complicated since for example, some individuals 

have a natural T/E ratio higher than 4 and some have shown not to reach a T/E above 4 even 

after an injection of a large doses of T [62]. 

2.3.3 The Athlete Biological Passport (ABP) 

Since there are no one-size-fits-all reference ranges for steroids, Donike et al. proposed the 

application of individual steroid profiling already in 1994 [81]. In 2007, Sottas et al. improved 

this method by suggesting a Bayesian screening test for the detection of abnormal values in 

longitudinal biomarkers [82]. This resulted in the steroidal module of the Athlete Biological 

Passport (ABP). With an algorithm that calculates reference ranges based on the athlete’s 

previous results, every individual gets his or her own reference ranges [83]. The more samples 

each athlete adds to his or her passport the narrower the individual reference range gets, an 

example is shown in Figure 2-6.  The goal of using Bayesian theory is to evaluate how likely 

the passport data are assuming a normal physiological condition. An atypical passport finding 

(ATPF) is obtained when a sample in a passport goes outside the individually calculated 

reference ranges.  

Positive criteria according to traditional testing [2] 

i. T/E > 4.0 

ii. A/T < 20 

iii. 5αAdiol/5βAdiol > 2.4 

iv. Concentration of T or E (adjusted for SG) > 200 ng/mL in males or  

> 50 ng/mL in females 

v. Concentration of A or Etio (adjusted for SG) > 10,000 ng/mL 

vi. Concentration of 5αAdiol (adjusted for SG) > 250 ng/mL in males or  

> 150 ng/mL in females, combined with a 5αAdiol/E > 10 in either sex. 
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Figur 2-6. The T/E profile of the ABP for an individual tested seven times. The blue dots on the center blue line represents 

the T/E ratios measured at each test point. The outer red lines are the individually calculated reference range that gets more 

specific with each test.  

The introduction of the steroidal module of the ABP has greatly improved the detectability of 

endogenous steroids. One study showed a 41% false positive risk when using traditional testing 

as compared to 4% when using the ABP [84]. The sensitivity of the steroidal module has been 

tested for a variety of T formulas and administration routes, all studies showing a vast 

improvement with longitudinal monitoring [78, 79, 85-87].  

There are factors other than doping that can influence the steroid profile and give ATFPs. It is 

the role of the Athlete Passport Management Units (APMUs) to evaluate each passport and 

draw conclusions on the likelihood of doping. To make correct interpretations the APMUs need 

information about other factors and how they influence the steroid profile. Because of the 

difficulty of this interpretation as well as the collection of reliable baseline values, T detection 

still remains one of the most difficult challenges in doping control analysis. 

2.3.4 Confirmation with IRMS 

When the T/E passport has generated an automatic ATPF or raised any other suspicion, the 

sample will proceed to confirmation with gas chromatography-combustion-isotope-ratio mass 

spectrometry (IRMS) [1]. In the confirmation, the isotopic composition of five target 

compounds (TC) are measured with IRMS and compared to an endogenous reference 

compound (ERC). The carbon isotopic composition is presented as δ13C-value which is 13C/12C 

in the unit of per mille (‰) compared to a virtual carbon isotopic international standard (called 

Vienna Pee-Dee Belemnite) [88, 89]. The TCs are compared to the ERC which gives Δδ13C-

values. For a test to be positive it has to meet one of the following sets of criteria: 
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This method is based on the principle that biomarkers excreted after external administration of 

steroids have a different isotopic composition of their carbon atoms than if the steroids were 

produced by the body. The carbons in steroids produced by our body come from our diet which 

is based on two groups of higher plants, C3 and C4 plants [90].  C3 plants have less 13C and 

hence a lower δ13C-value than C4 plants. Our diet is a mix of these two types of plants and 

therefore the normal range, of δ13C of -26 to -16 ‰, falls in between that of C3 and C4 plants, 

depending on which plant source make up the bigger part of our diet [91-93]. One big drawback 

with this method is that illicit testosterone preparations with isotopic compositions similar to 

or even within the normal range exist (Figure 2-6) [94-96]. In these cases, IRMS will not be 

able to confirm exogenous use. Since IRMS is used as the ultimate confirmation of doping with 

endogenous steroids, the sensitivity of this method has to be further evaluated.  

 

 

Figure 2-6. Carbon isotopic composition in Δδ13C-value of T preparations [95-97], normal steroid range [92, 93] 

and of the two types of higher plants that are the sources for our diet (i.e. C3 and C4 plants) [90].  

 

IRMS positivity criteria [1] 

i. The δ13C-value of ERC-T > 3‰ and either ERC-5Adiol or ERC-5βAdiol > 3 ‰ 

ii. The δ13C -values of ERC-5Adiol and ERC-5Adiol pairs are both > 3 ‰ 

iii. E > 50 ng/mL in females or > 200 ng/mL in males (SG-adjusted) and the δ13C -value 

of  ERC-E > 4 ‰ 

iv. The δ13C -value of ERC-A > 3 ‰ or ERC-Etio > 4 ‰ 

v. The δ13C -value of  ERC-A is between 2-3 ‰ or ERC-Etio is between 3-4 ‰, and 

one of ERC-5Adiol or ERC-5Adiol > 3 ‰ 

vi. The δ13C -value of ERC-5Adiol > 4 ‰ and 5Adiol ≤ -27 ‰ 
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2.4 STABILITY OF THE URINARY STEROID PROFILE 

What can be considered normal urinary steroid levels depends on the population in question. It 

differs depending on gender [64, 98], ethnicity (due to genotype similarities within ethnicities) 

[54, 62], if the subjects are athletes and also the type of sport they are involved in [32](our 

unpublished results). As a result, reference ranges should be obtained from an as similar 

population as possible to those investigated. These reference ranges are important to the ABP 

algorithm that uses these as a starting point when no previous measurements of an individual 

are available. Then the algorithm progressively switches from these population-based values 

to individually calculated reference ranges as the tests number increases.  

Although the inter-individual variation is larger than the intra-individual variation, there are 

still large variations within an individual. What is known about some of the factors affecting 

steroid levels is explained in this chapter.  

2.4.1 Circadian and Annual Rhythm 

T is produced with a diurnal variation in men with maximum concentration in blood observed 

around 6:00-8:00 and a minimum around 18:00-22:00 [99-103]. Also in women, have T been 

indicated to show circadian variation with highest levels in the early morning hours [30, 32].  

This circadian variation has a high inter-individual variation. The diurnal variation of 

testosterone in normal men is due to a change in secretion rather than in clearance and is largely 

LH driven [100]. The circadian variation of urinary steroids has only been studied in few 

individuals and not for all steroids measured in today’s doping tests [100, 104, 105]. In ten 

women and ten men, it was seen that peak A and Etio concentrations in urine occur between 

12:00-15:00 for both men and women [106]. The circadian variation seen in women is believed 

to be more significant than the variation seen in men due to lower concentrations of metabolites 

[107]. The effect of time of day on the steroid profile needs to be further evaluated in a larger 

population to rule out significance in the evaluation of passports.  

If there are annual fluctuations in serum T levels is controversial with several studies pointing 

in different directions [108]. In a large population of Norwegian men (N=1548) total serum T 

showed peak levels in October-November and lowest levels in June [109], but other studies 

failed to confirm these results but rather reported inconsistent variations [110-112]. Little 

research has been done on seasonal variations in urinary steroid levels, and this area is therefore 

mostly unknown. One pilot study of five women showed no annual rhythm in excretion rates 

of steroids [113].  

2.4.2 Changes with Age 

Serum total and free T decreases with age in men [114], with maximum concentrations at 20-

24 years [115]. The decline in serum T is usually accompanied by increased or unchanging 

levels of LH and increased levels of FSH [116]. Also in women have T been shown to decrease 

slowly with age, however, due to a drop in SHBG in women with age, free androgen levels rise 

[117]. To investigate the changes in urine androgen levels with age Dehenin et al. studied 140 
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men between 13 and 20 years and concluded that T and E glucuronide increased during the 

pubertal development with no significant change in the T/E ratio [118]. Similar results were 

seen by Raynaud et al [119]. In a group of adolescent girls (aged 6–17, n=256), a decreasing 

T/E ratio during development was seen, due to larger relative increase in E excretion [120].  

2.4.3 Variations with Stress 

Circulating T and cortisol levels fluctuate during stressors, such as athletic competitions. In a 

meta-analysis with both male and female soccer players, serum and salivary T was shown to 

increase after a match win and decrease if the player lost the game [121]. Female T being 

marginally more affected.  

In a study investigating students before and after a big exam, the urinary steroid profile showed 

significant changes, especially in women [122]. However, the increases seen in A and Etio 

disappeared when combined into the ratio A/Etio in women and was only slightly higher for 

men. They saw no difference in T/E ratio, in agreement with Donike et al. results showing that 

T/E is not affected by competing in the Tour de France [81] nor participating in a pistol shooting 

competition [123]. In a study with almost 4200 urine samples collected from male soccer 

players, the steroid concentrations and ratios showed no significant difference if collected in 

competition (IC) or out of competition (OOC) [26]. However, they did not discriminate 

between IC samples collected after a win or a loss. Even though there seems to be no clear 

evidence that steroid profile ratios are affected by IC or OOC testing, it is commonly believed 

to be the case.  

2.4.4 Menstrual Cycle 

Serum LH levels change dramatically throughout the menstrual cycle and since androgen 

secretion from the ovary is under LH control, androgen secretion would be expected to vary 

throughout the cycle. Indeed, serum levels of A and T are lowest in the early follicular phase 

and rise to a maximum around the time of ovulation and then gradually fall again [124, 125].  

The effect of the menstrual cycle on the urinary steroid profile is unclear. There are 

contradictory results of the menstrual cycle’s effect on the T/E ratio with several studies 

reporting no common pattern in T/E ratio during the menstrual cycle [104, 107, 113, 126, 127]. 

However, Longhino et al. measured total T and E in two women during two cycles and saw 

significant changes in T and E with maximal levels at the end of the cycle (20-25 and 22-23 

days respectively) [128].  Catlin et al. collected morning urine every day from three women for 

five menstrual cycles and saw a T/E peak in the first days of the menstrual cycle [129]. In 

conclusion, most studies point towards a random or at least individual variation in the T/E ratio 

with the menstrual cycle. However, no study was large enough to draw any definitive 

conclusions and the other ratios of the ABP were not considered.  
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2.4.5 Hormonal Contraceptives 

Hormonal contraceptives (HC) consist of a progesterone derivative or a combination of a 

progesterone and an estrogen derivative. Both progesterone and estrogens are negative 

regulators of the HPG axis [130, 131] and therefore suggested to affect androgen secretion. In 

fact, non-HC users have significantly higher serum levels of DHEAS, androstenedione, free 

testosterone, LH, and FSH values than HC users [32].  

The use of HC has been suggested to suppress the production of E and thus lead to an increase 

in urinary T/E. So far, only a crossover study with four volunteers has been performed to 

investigate HC effect on the urinary steroid profile [132]. This study showed significant 

increases in the T/E-ratio during the time the subjects were on contraceptives.  

Some hormonal contraceptives contain norethisterone which results in presence of 19-

norandrosterone (19-NA) in urine [133, 134]. This steroid is interesting because it is the main 

metabolite of nandrolone (and other 19-norsteroids) and hence monitored in doping tests [135].  

Some of the urinary 19-NA seem to come from impurities of the norethisterone tablets (i.e. 19-

norandrostenedione) but most of it is formed as a product of norethisterone metabolism [136-

138].   

2.4.6 Pregnancy 

During pregnancy, the female body encounters dramatic hormonal changes. Pregnancy causes 

hCG to increase during the first three months of pregnancy. The placenta is able to convert 

cholesterol into progesterone, which increases continuously throughout pregnancy and is 

excreted in maternal urine mainly as pregnanediols [139]. T production increases with 

progressing pregnancy and drops quickly after pregnancy [140, 141].  

Controlled studies of urinary steroid profile during pregnancy are scarce. One case study 

investigating the urinary T/E ratio in three pregnant women showed no difference in T during 

the different stages of pregnancy but an increase in urinary E causing a significant change in 

T/E ratio [139]. They saw no change in the 5αAdiol/5βAdiol during pregnancy. The increase 

in E could possibly be related to the increasing secretion of hCG during pregnancy since hCG 

administration has shown to increase E excretion in men [142]. 

Small amounts of 19-NA of natural origin can be present in both men and women [143, 144]. 

However, during pregnancy, this production is increased and 19-NA levels up to 15 ng/mL 

have been measured in urine from pregnant women [134, 145, 146]. For this reason, WADA 

allows 19-NA concentrations to be as high as 15 ng/mL for pregnant women [135]. If the 

concentration exceeds 15 ng/mL confirmation with IRMS is performed. 
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2.4.7 Doping with Low Doses of Testosterone 

Gel, patches and oral capsules are popular routes of administration of smaller doses of T and 

intramuscular injections for a slower release of larger doses [147]. Low doses of endogenous 

steroids are a real challenge to detect since they are hard to distinguish from natural fluctuation 

when interpreting ABP profiles. Several studies have investigated the detectability of different 

T formulations and administration routes with the methods used today.  

A study administering T gel to 6 men estimated that the detection time for a single dose of 100 

mg T gel was about 7 days when longitudinally monitoring with individually set reference 

ranges were used [83]. In another study, 18 men were administered with 100 mg T gel per day 

for 6 weeks [79]. This study showed that the administration can be detected with longitudinal 

follow-up and that the best parameters for detecting T gel are T/E, 5αAdiol/E and A/E but 

unfortunately, they did not investigate the detection time. 

To my knowledge, there is only one study available investigating the effect of T doping on the 

female steroid profile. The study involved 10 female Japanese women injected with 100 mg T 

enanthate [76]. T/E did not exceed the traditionally used T/E cut-off ratio of 4 in any of the 

individual’s devoid of the UGT2B17 gene (n=6), in agreement with what has been seen in male 

del/del subjects [62]. IRMS could successfully confirm the administration in all women. There 

is no available longitudinal steroid profile of these women, since only one baseline value was 

taken.  

Several groups have proposed the use of other biomarkers than those in use today for better 

detectability of steroid doping. In a pilot study using extensive steroid profiling and 

longitudinal monitoring, the ratios 6α-OH-androstenedione/16α-OH-dehydroepi-

androstenedione, 4-OH-androstenedione/16α-OH-androstenedione, 7α-OH-testosterone/7β-

OH-dehydroepiandrostenedione and DHT/5βAdiol were identified as sensitive urinary 

biomarkers for T misuse [148]. Also, sulphoconjugated epiandrosterone has been suggested 

[149]. Apart from other urinary metabolites, other proposed biomarkers include, but not limited 

to, serum levels of LH, T, DHT, 17-OH progesterone and ratios of those [73, 150-153], and 

miRNA-122 [154].  
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3 AIMS  

3.1 GENERAL AIMS 

The general aims of this thesis were to evaluate natural variations of the steroid profile, 

including variations during the menstrual cycle and pregnancy, as well as how certain drugs, 

such as hormonal contraceptives and testosterone, affect the steroid profile. This knowledge 

can aid the interpretation of the steroidal module of the ABP. 

3.2 STUDY SPECIFIC AIMS  

Study I. The Dose Study 

To investigate if injections with T enanthate could be detected using the ABP and IRMS 

analysis as well as the UGT2B17 deletion polymorphisms role in this detection.  

Study II. The Testosterone Gel Study 

To investigate if a single dose of T gel could be detected using the ABP and IRMS analysis 

and if some blood parameters were sensitive as biomarkers for this detection.  

Study III. The Hormonal Contraceptives Study 

To investigate if hormonal contraceptives affect the steroid profile and to study three 

polymorphisms relation to the steroid profile.  

Study IV. The Menstrual Cycle and Emergency Contraceptive Study 

To investigate if and in that case how the steroid profile varies during a menstrual cycle 

including both glucuronide and sulfate conjugated fractions. Additionally, to study what 

happens to the steroidal passport after administration of an emergency contraceptive pill.   

Study V. The Pregnancy Study 

To investigate what happens to the steroid profile and 19-NA during pregnancy. In addition, 

androgen disposition in relation to two polymorphism were investigated.  

Study VI. Inter-Individual Variation of the Steroid Profile 

To evaluate natural variations in the steroidal profile and factors that influence the profile, 

including but not limited to gender, age, time of day, time of year and in competition or out of 

competition testing.   
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4 METHODOLOGICAL CONSIDERATIONS 

The methods used in this work are either methods used for doping control purposes accredited 

by WADA, genotyping assays or standard methods accredited by a hospital for medical use. 

Paper I, IV and V describe new or partly new methods developed for the paper or just 

previously unpublished. The methods are described in detail in these papers, whereas this 

chapter gives a broader overview of the methods with changes made during the way as well as 

limitations.   

4.1 STUDY SUBJECTS 

Table 4.1 gives a summary of the study subjects used for each study. 

Study Subjects Recruited 

from 

Analyzed for 

I. The dose study 25 male 

volunteers 

Sweden  Urinary steroids 

 Serum steroids 

 UGT2B17 genotype 

 Carbon isotopic 

composition 

II. The testosterone 

gel study 

8 male 

volunteers 

Sweden  Urinary steroids 

 Serum steroids 

 UGT2B17 genotype 

 Carbon isotopic 

composition 

III. The HC study 79 female elite 

athletes 

Sweden  Urinary steroids 

 UGT2B17, UGT2B7, 

CYP17A1 genotype 

IV. The menstrual 

cycle + EC study 

6 female 

volunteers 

Sweden  Urinary steroids 

 Sulfate and glucuronide 

fractions 

V. The pregnancy 

study 

69 female 

volunteers 

Canada  Urinary steroids 

 19-NA 

 UGT2B17, CYP17 

genotype 

VI.  Inter-individual 

variation of the 

steroid profile 

5473 athletes 

(4180 men and 

1293 women) 

Sweden and 

Norway 

 Urinary steroids 
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4.1.1 Limitations 

As always there are limitations with the study populations recruited. The aim of this thesis was 

to investigate factors, internal and external, that can affect the steroid profile to aid evaluation 

of steroid passports. Steroid passports are only used for athletes and hence, athletes are the 

target population. Of the studies performed, only two were performed on elite athletes (Study 

III and VI), the rest being performed on healthy volunteers. Even though androgen levels in 

athletes are similar to that of the general population, androgen levels are known to be induced 

by physical exercise [155].  

With subject recruitment comes selection bias. The only representative group of those tested 

would be Study VI where all steroid profiles collected in Sweden and Norway during a time 

period of a few years were included. However, this population may only be representative of 

athletes from Sweden and Norway since for example, steroid excretion depends on genetic 

disposition and that varies in different geographical areas. Additionally, individuals taking 

medications are not excluded from this study unless this was discovered during the analyses 

(e.g. corticosteroids) and it is likely that at least some were doped. The study population in 

Study III was also based on elite athletes and controlled for hormonal contraceptive use. 

However, this recruitment was made before a summer Olympics games so mainly subjects 

from summer sports were included.  

In study I, II, IV and V the subjects were recruited by different methods. For example, in study 

V, all pregnant women were recruited from one clinic and hence all from the same geographical 

area. However, for being from one geographical area the spread of ethnicities was large. In 

addition, all women recruited had normal pregnancies and therefore the results are only valid 

for normal pregnancies.  

4.2 URINE AS SAMPLE MATRIX 

The level of an androgen in urine does not always closely reflect that in blood because of 

genetic differences in metabolism of steroids [60] and factors that affect renal function in 

extreme stress situation [156]. However, since a large portion of the T for women is produced 

by peripheral conversion of weaker precursor androgens, studying serum levels of T is not 

always representative of the androgenic load of the body [157]. Instead, the urinary excretion 

of androgen metabolites is of interest as it may reflect the androgen exposure [158]. Also, urine 

sampling has been preferred since it is cheaper to transport and less invasive to collect.  

4.2.1 Storing Urine Samples 

For some of the studies, the urine samples were stored in the freezer for up to two years leading 

up to the analysis. The urine samples were stored at -18°C and sometimes subject to several 

thaw cycles. The major concerns storing urine samples for a longer time is bacterial 

contamination and possible degradation of steroids. Bacterial degradation is measured by 

studying bacterial markers and the samples are excluded if there were signs of bacterial 

degradation (see section 4.3.2.3). TG and EG have been shown to be stable at 4˚C, -20˚C for 
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22 months as well as for up to three freeze-thaw cycles [159]. However, that study used sterile 

urine to start with. Van Eenoo et al. had a seemingly better approach by looking at measurement 

uncertainty data in real urine samples after storing [160]. However, he did not study the steroids 

but rather other doping agents. He did conclude that 19-NA is stable at 4˚C and -20˚C for 9 

months and up to 6 freeze-thaw cycles. The isotopic composition of steroids have been shown 

to be stable at 37˚C for up to 5 days even when there were signs of bacterial growth in the 

sample [161].  

4.2.2 Specific gravity 

Since concentrations of steroids in urine is dependent on the amount of fluids excreted, the 

measured steroid concentrations have to be corrected for the dilution of the urine. Otherwise, 

concentrated urine will give an overestimation of the absolute concentration whereas overly 

diluted urine will give an underestimation of the concentration. To adjust for urine dilution in 

doping control, specific gravity (SG) is used [2]. SG is the ratio of the weight of a volume of 

urine to the weight of the same volume of pure water at the same temperature [162]. Since it is 

the ratio of densities, it is unitless. The correction formula corrects each sample to a specific 

gravity of 1.020 according to: 

𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗
1.020 − 1

𝑆𝐺 − 1
 

 

There is some controversy on how good this formula for correction is, especially at low (such 

as <1.005) and high (> 1.035) SG. An alternative way to correct for urine dilution is to use 

creatinine, this method is generally used in medicine. However, creatinine is a byproduct of 

muscle metabolism and therefore not an option for athletes. The use of ratios in the steroid 

profile circumvents the need for dilution correction.  

4.3 GC-MS AND GC-MS/MS ANALYSES 

The urinary steroid profile was obtained with the standard method used at the Doping Control 

Laboratory in Stockholm (Division of Clinical Pharmacology, Karolinska University Hospital 

in Huddinge), at the time of each study. For this reason, the method used for analyzing steroid 

profiles changed from GC-MS in Study I and III to GC-MS/MS in study II, IV, V and VI. The 

GC-MS method is essentially described by Chung et al. [163], with minor modifications 

according to Garle et al. [164], whereas the GC-MS/MS method was described in paper IV.  

4.3.1 GC-MS vs GC-MS/MS 

The concentrations of the steroid profile obtained by the GC-MS have been proven to yield 

very similar results to GC-MS/MS [165]. The T/E ratio did show some discrepancies likely 

due to the higher specificity of the GC-MS/MS method as well as the different ways for the 

two methods to calculate this ratio (corrected area or concentration based). Even if the methods 

do not give identical results, this does not affect the results obtained in this thesis because within 
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one study only one of these methods have been used and hence, only compared to values 

obtained from the same method. Each batch contained at least one calibration standard and 

quantification was achieved by comparing the signal to the corresponding isotope labeled 

internal standard. The limit of quantification (LOQ) and linear range of the two methods can 

be found in Table 4-2.   

Table 4-2. Limit of quantification (LOQ) and linear range for the two GC-MS methods used  

Steroid GC-MS GC-MS/MS 

 LOQ (ng/mL) Linear range (ng/mL) LOQ (ng/mL) Linear range (ng/mL) 

T 2 2-200 0.5 0.5-200 

E 2 2-200 0.5 0.5-200 

5αAdiol 5 5-500 1.5 1.5-600 

5βAdiol 9 9-900 1.5 1.5-600 

A 100 100-10000 100 100-10000 

Etio 100 100-10000 100 100-10000 

 

4.3.2 Sample preparation controls 

In addition to the following internal standards, there are controls samples such as a buffer blank, 

negative urine and a certified reference material as external control.  

4.3.2.1 Hydrolysis control 

In steroid screening with GC-MS(/MS), it is the unconjugated as well as the glucuronide 

fraction that is measured after hydrolysis of the glucuronide group by β-glucuronidase from 

E.coli. The time it takes to hydrolyze each steroid glucuronide varies, and consequently, 

incomplete hydrolyzation results in characteristic patterns of the steroid profile [3]. T- and E-

glucuronide are cleaved completely within several minutes while A- and Etio-glucuronide 

require extended hydrolysis times. The hydrolysis of Etio-glucuronide is completed faster than 

the cleavage of A-glucuronide. Consequently, an incomplete hydrolysis leads to decreased A/T 

and A/Etio ratios [3]. In order to test for the completeness of hydrolysis, the ratio between d4-

A-glucuronide and d5-Etio from the internal standard is used (Figure 4-1). If the hydrolysis is 

not complete, the urine sample has to be prepared again possibly with more β-glucuronidase or 

extended time for hydrolysis.  
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 Samples in one batch 

Figure 4-1. Hydrolysis completion results from a batch showing normal variation in hydrolysis between samples. 

The hydrolysis completion is calculated as d4-A/d5-Etio and normalized to the batch mean. The d4-A comes from 

the hydrolyzed d4-A-glucuronide in the internal standard. 

4.3.2.2 Derivatization control 

The last step of sample preparation is derivatization with N-Methyl-N-trimethylsilyl 

trifluoroacetamide (MSTFA) to form trimethylsilyl (TMS) derivatives. This is done to increase 

volatility by covering hydrophilic groups which in turn improves GC separation [166]. An 

incomplete derivatization leads to altered steroid profile ratios, e.g. low A/T [3], as bis-TMS 

ions are accounted for in GC/MS measurements of endogenous steroids but not those with one 

TMS group. The completeness of derivatization is controlled by monitoring the Androsterone-

mono-TMS, which should be low compared to bis-TMS i.e mono-TMS-A/(mono-TMS-A + 

bis-TMS-A) < 1%. If the derivatization is incomplete, more derivatization reagent can be 

added. 

4.3.2.3 Bacterial markers 

Urine contaminated with bacteria can affect the steroid profile [167], therefore bacterial 

degradation has to be accounted for. This is done by looking for metabolites bacteria but not 

humans can produce i.e. 5αAND (5α-androstanedione) and 5βAND (5β-androstanedione) 

[168]. According to WADA TD2016EAAS, the sample is not valid due to extensive 

degradation when 5αAND/A ≥ 0.1 and/or 5βAND/Etio ≥ 0.1, values between 0.05 to 0.1 are 

reported although the sample is still valid [2]. However, not all bacteria can produce 5αAND 

and 5βAND and therefore, contamination with these bacteria will go unnoticed [168]. An 

unconjugated fraction higher than 10% of the total amount of testosterone is a useful indicator 

of urine sample contamination but the unconjugated fraction of T is only measured if suspicion 

of bacterial contamination is raised. 
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4.4 UHPLC-HRMS ANALYSES 

While GC-MS(/MS) techniques have been used to obtain all steroid profiles in accordance with 

the WADA guidelines, UHPLC-HRMS was used to study phase II metabolites in Study IV. 

The benefit of using LC instead of GC is that no hydrolyzation is needed and therefore you can 

study several phase II modification routes simultaneously, such as the glucuronide, sulfate as 

well as free fraction. Although the endogenous steroids can be measured with LC-MS, this 

analytical approach is not used in doping testing, but initial analysis and confirmation should 

be based on GC separation [2].   

4.5 IRMS ANALYSES 

During the gas chromatography- combustion- isotope ratio mass spectrometry (GC-C-IRMS) 

analysis the steroids in the sample are combusted following GC-separation and prior to 

detection. It is, therefore, necessary that the samples injected are properly cleaned from possible 

contaminants. Consequently, the sample preparation of the urine before IRMS analysis is 

extensive. This procedure is explained in detail in paper I. The method had improved before 

publication of Study II with more separation accomplished by a second HPLC analysis for 

some of the steroids. The second HPLC was added to decrease the background and further 

separate some simultaneously eluting endogenous steroids.  

The purity of each steroid peak was checked by spectral analysis using GC-MS with the same 

chromatographic conditions as in the GC-C-IRMS method. If the purity of the peak was less 

than 95% as compared to a reference spectrum of the compound, the steroid result was rejected 

and the sample was prepared all over again.  

Pregnanediol (PD) was used as ERC in all studies because it is the principal ERC according to 

the WADA technical document [1]. However, other ERCs such as 5α-androst-16-en-3α-ol (16-

en), 11β-hydroxyandrosterone (11-OH-A) or 11-keto-etiocholanolone (11-oxo-Etio) can be 

used and according to WADA shall replace PD if the PD signal is suppressed, affected by poor 

chromatography or by administration of a precursor e.g. pregnenolone. We accoutered no 

problem with PD and hence used it for all samples.  

4.6 GENOTYPING 

All genotyping was performed using genotyping assays and real-time polymerase chain 

reaction (rt-PCR). The copy number variation analysis (e.g. UGT2B17) is based on ΔΔCT-

method using cycle threshold values and comparing to a reference gene [169]. The reference 

gene used was Albumin in Study I, II and III and changed to RNaseP in Study V. To distinguish 

between those without the UGT2B17 gene (del/del) and those with one copy is unproblematic 

since they will show signals for the reference gene but not UGT2B17. However, to distinguish 

between those with one or two copies can be more difficult since there may be an overlap in 

their signals. For this reason, the UGT2B17 ins/ins and ins/del groups have been combined. 

Whenever possible, whole blood was used for DNA extraction. However, in Study V, DNA 

was isolated from saliva. 
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4.7 THE ATHLETE BIOLOGICAL PASSPORT SOFTWARE 

The ABP software used was a research version from the Swiss Laboratory for Doping 

Analyses, Epalinges, Switzerland, that came before the steroidal module of the ABP was 

implemented. The algorithm used in the ABP as well as the current software is held secret by 

WADA and not accessible for researchers.  

Since the ABP version used was an older version, the newest ratio in the steroidal module, i.e. 

5αAdiol/E, is not included. Instead, we as well as others [78, 87, 170] used average ± 3SD of 

the baseline values to calculate the subjects individual cut-off ranges. How well this 

corresponds to the actual algorithm remains unknown because of the secrecy of the algorithm. 

The ABP algorithm starts by using population-based values and progressively switches to 

individually calculated thresholds. Using average ± 3SD does not take the population-based 

values into account and hence will differ from the ABP software.  

4.8 STATISTICS 

As proven before [171] and in Study VI, steroids do not show a normal distribution but rather 

a log-normal distribution. The only exception is T, and therefore also the ratios including T (e.i 

T/E and A/T), which are bimodal due to a deletion polymorphism in UGT2B17 [59]. 

Consequently, non-parametric tests are used in this thesis.  

The software used has been GraphPad Prism version 4-7 for Windows, GraphPad Software, 

La Jolla, California, USA; Mplus24 version 5.2 for windows, Muthén & Muthén, Los Angeles, 

CA; R version 3.3.2 and IBM SPSS Statistics for Windows, Version 24.0, IBM Corp. Armonk, 

NY. 
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5 MAIN RESULTS  

5.1 NATURAL VARIATIONS IN THE URINARY STEROID PROFILE 

Based on the coefficient of variations (CVs) calculated from 11000 steroid profiles, we 

conclude that using steroid ratios is almost always superior to absolute concentrations (Paper 

VI). Additionally, all concentrations and ratios show larger between-subject than within-

subject variation. Women generally show larger variations in their steroid profiles than men, 

both inter- and intra-individually. The most stable ratio, e.i. the ratio showing the least 

intraindividual variation was T/E for men (CV of 16.4%) and A/Etio for women (CV of 

22.7%). The greatest variation was seen in 5αAdiol/E for both sexes (intraindividual CV of 

26.7% and 40.2%, for men and women respectively).  

Based on the bimodal T distribution it was calculated that 13.6% of the men belonged to the 

group excreting low amounts of T and therefore believed to be homozygous for the deletion of 

UGT2B17.  The population-based threshold set to T/E of 4 was exceeded by 4.3% of the men 

and 2.0% of the women. 0.7% and 0.2% of the men and women, respectively, showed T/E 

ratios above 6 (Figure 5-1).  

Figure 5-1. T/E ratio distribution for men (to the left) and women (to the right) based on 11000 steroid profiles in 

Study VI showing part of the distribution outside of WADAs current population threshold of 4 and the previously 

set one at 6. The absence of bimodality for the female T/E distribution is probably due to the large numbers of missing 

values because of concentrations below LOQ (N=608). 

Some of the inter-individual variation seen in steroid concentrations and ratios could be 

explained by factors reported on the doping control forms. Such factors included what sport 

the athlete was participating in (data partly presented in Paper VI), the age of the athlete, if the 

urine was collected at a competition or not, as well as what time, both of day and year, the 

sample was collected. The most influential to the steroid profile of these factors was the sports 

classification belonging (detailed in the appendix to Paper VI) as well as if the sample was 

collected in competition or not. 
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5.1.1 Variations with time 

The steroid profiles vary over the day for both sexes but women’s steroid profiles vary more 

than men’s do. Generally, the ratios are higher in the afternoon than in the morning but 

especially for women, there are large variations over the day. The largest variation could be 

seen in 5αAdiol/5βAdiol where the ratio was 48% higher in the afternoon as compared to 

morning. For men, 5αAdiol/E showed the largest time of day variation with 43% higher values 

at night as compared to the morning.  

Women also show greater variation in their steroid profiles during the year, with significant 

changes in all five steroid ratios (Paper VI). The T/E ratio varied most with 30% higher median 

in September as compared to December. Men showed no more than 16% difference of medians 

in steroid ratios where the months differed significantly.  

Men show peak urinary T concentration and T/E ratio at approximately 20 years of age. 

Women’s T, on the other hand, is stable with age but T/E drops due to an increase in E.  

5.1.2 In Competition vs. Out of Competition 

Women show higher concentrations of all steroids but 5βAdiol when the urine is collected in 

competition (IC) as compared to out of competition (OOC) (PaperVI). The net effect on the 

ratios is increases of T/E, A/Etio, and 5αAdiol/5βAdiol as well as decreases of A/T and 

5αAdiol/E. Men’s steroid levels do not differ as much between IC and OOC testing, however, 

all ratios but A/T show increased levels IC. Interestingly, women showed 65% higher T 

excretion IC whereas men T was almost unchanged.  

5.1.3 Menstrual cycle 

E was the only metabolite that significantly changed during the menstrual cycle, being at its 

highest at the end of the cycle (Paper IV). This leads to significant decreases in T/E and 

5αAdiol/E at the end of the cycle as compared to the first day of the menses.  

5.1.4 Pregnancy 

Pregnancy affects urinary steroids and the ratios of the steroidal module even in the first 

trimester (Paper V). E was higher and consequently, the T/E and 5αAdiol/E ratios were lower 

in the pregnant women. A/Etio, on the other hand, was increased during pregnancy. Depending 

on what group we compered the pregnant women to (postpartum or non-pregnant women) both 

ratios 5αAdiol/5βAdiol and A/T showed significant differences (Figure 5-2). 
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Figure 5-2. Median ratios of the ABP during the first trimester (white boxes, n= 24), postpartum (light grey, n= 20) 

and in the ABP study population of women (dark grey, n= 3229). A/T values are shown on the right y-axis whereas 

the others ratios on the left. 

   

5.2 THE URINARY STEROID PROFILE AFTER DRUG USE 

5.2.1 Hormonal Contraceptives 

Female athletes taking hormonal contraceptives showed 40% lower urinary E than non-users, 

whereas T was the same. After removing individuals homozygous for the deletion of 

UGT2B17, the T/E ratio was 29% higher among the HC users (Paper III). A/Etio and 

5αAdiol/5βAdiol showed no significant changes. Not used at the time of the publication of 

paper III was the A/T and 5αAdiol/E ratio, the results from there ratios are shown in Figure 5-

3. 

 

Figure 5-3. A/T and 5αAdiol/E in elite female athletes not taking hormonal contraceptives (no HC) as compared to 

those taking HC.  
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There was no significant difference in A/T between the HC users and non-users (Mann-

Whitney, p = 0.1640). However, the 5αAdiol/E ratio was 1.7-fold higher in the women using 

HC (p=0.0042).  

Twenty-four hours after a single dose of an emergency contraceptive pill E had decreased 3-

fold and A, Etio and 5βAdiol decreased 2-fold (Paper IV). Within 48 hours the levels were 

back to normal. Despite the changes in concentrations, no ratio changed significantly. 

However, one woman did show an ATPF in her T/E ratio 12 hours post administration. The 

research version of the ABP used in this study did not include the 5αAdiol/E, so this ratio was 

not studied longitudinally. However, if we were to use the mean value of the baseline ± 3SD 

as a way to calculate the individual reference range, one individual showed ATPF 12 and 72 

hours after administration of the emergency contraceptive (Figure 5-4). This was the same 

individual who showed an ATPF for T/E at 12 h.  

 

Figure 5-4. Eight 5αAdiol/E values for a woman during a menstrual cycle (1-4, i.e. baseline) and 12, 24, 48 and 72 h 

after an emergency contraceptive pill.  The reference ranges are calculated as mean ± 2SD (dotted line) and ± 3SD 

(solid line). The lower limit of the reference range (-3SD) is below 0 and therefore not shown.  

5.2.2 Testosterone administration 

T enanthate injections as low as 125 mg and a single dose of 100 mg T gel could be detected 

with current methods of doping testing, at least one time point after administration. In Paper I, 

we saw that T and its metabolites increase in a dose-dependent manner after T enanthate 

injections, whereas E decreased but not dose-dependently. The suppression of E could still be 

seen 6-8 weeks after injection of 500 mg T enanthate. The most sensitive marker in the ABP 

for this detection was T/E followed by 5αAdiol/E, A/T only sporadically went outside the 

individual’s threshold. The other ratios were not affected enough to give ATPFs. 

5αAdiol/5βAdiol and A/Etio did not change even if the included concentrations did because of 

an equal increase of the numerator and denominator of these ratios. 5αAdiol/E was not tested 

in this study, but when mean of baseline ± 3SD was used all individuals with three baseline 

values showed atypical profiles for the two higher doses (500 and 250 mg) and all but three 

individuals for the lowest dose (125 mg).  
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After T gel administration the major changes in the steroid profile were increases in T and 

5αAdiol as well as a decrease in E (Paper II). These changes lead to ATPFs in primarily 

5αAdiol/E, T/E and 5αAdiol/5βAdiol, but the other ratios also showed abnormalities. The 

steroid profile was abnormal for at least 48 hours in half of the individuals, mostly 5αAdiol/E 

contributing to this longer detection window. T/E, on the other hand, was only atypical for 24 

hours for half of the subjects and shorter for the rest. 

IRMS was very sensitive to detect doping with T enanthate, one subject being positive for 6-8 

weeks after 500 mg injection. IRMS was positive in all four individuals studied after T 

enanthate injection whereas only two of five tested after T gel met a full criteria for a positive 

test. The most sensitive metabolite for detection of T injection was T and 5βAdiol whereas for 

T gel it was 5αAdiol.  

5.3 UGT2B17 AND DOPING TESTS 

A double deletion polymorphism in UGT2B17 has previously been associated with T excretion 

in men, in Study III we show this to be true even for women. We also found that women 

homozygous for the deletion had higher 5αAdiol/5βAdiol ratios. In Study I and II we saw that 

none of the UGT2B17 del/del subjects reached the population-based thresholds used in 

traditional testing (Table 5-1). However, using individual reference ranges with three baseline 

values, seem to be almost as effective for UGT2B17 del/del subject as for insertion carriers. 

IRMS results do not seem to be affected by the UGT2B17 deletion polymorphism other than 

that T usually cannot be used as a target compound due to low concentration. 

Table 5-1. Sensitivity of the three methods used to detect T doping after administration of three doses of T enanthate 

injections and one dose T gel. The table shows how many percent of the subjects tested positive at some point after 

administration according to the positivity criteria of the different tests. Note that in the T gel study there was only 1 

del/del subject.  

 

  
Traditional testing ABP IRMS 

 Dose Ins del/del Ins Del/del Ins Del/del 

T 
en

an
th

at
e 500 mg  Positive Negative Positive Positive Positive Positive 

250 mg Positive Negative Positive Positive Positive Positive 

125 mg 
80%  
positive Negative Positive 

88% 
positive Positive Positive 

T 
ge

l 

100 mg 
14%  
positive Negative Positive Positive 

25% 
positive Positive 
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5.4 SPECIFIC GRAVITY CORRECTION (PRELIMINARY RESULTS) 

To adjust for different dilutions, the specific gravity of the urine samples is used. The median 

specific gravity of the 11 000 urine samples in Study VI were 1.016 for women and 1.019 for 

men (p < 0.001) with a range from 1.002 to 1.050. To investigate if the correction formula for 

specific gravity is accurate, A concentrations (not corrected for SG) among men were used. 

Assuming that the median A concentrations were not dependent on SG, but rather the other 

way around, the correction formula was compared to median A concentrations. The dotted line 

Figure 5-5 is the correction formula for SG:   

𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗
1.020 − 1

𝑆𝐺 − 1
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Figure 5-5. Median Androsterone concentration not corrected for specific gravity plotted against specific gravity for 

men. The correction formula for SG is illustrated as the dotted line. 
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6 DISCUSSION 

Implementation of the steroid module of the ABP has improved detectability of doping with 

endogenous steroids as evidenced by the results in Study I and II. However, evaluating steroid 

profiles is a difficult task since the steroid profile is affected by many factors other than doping. 

In this thesis, factors such as season, time of day, age, IC/OOC testing, menstrual cycle, 

hormonal contraceptives, and pregnancy have been studied in relation to their effect on the 

urinary steroid profile used in doping control.  

We have seen both annual and diurnal variations in steroid profiles when looking at a large 

population of athletes, with time of day having a larger impact on markers of the steroid profile. 

For example, the women in this population showed almost 50% higher median 

5αAdiol/5βAdiol in the afternoon as compared to the morning. The relevance of this diurnal 

variation when evaluating passports has to be evaluated on an individual basis. However, these 

results show that variations over the day, and maybe even year, might be factors to consider 

when interpreting steroid passports. Ideally, in order to minimize the intra-individual variability 

due to diurnal variation, the urine would always be collected at the same time of the day. 

However beneficial for the ABP, this would not be a favorable approach for doping testing in 

general. Some doping substances have short detection windows and would be easy to get away 

with if the surprising momentum disappeared from doping testing. 

Steroid profiles collected in competition (IC) can differ from those collected out of 

competition (OOC). Samples from women collected IC showed on average 65% higher T 

levels than those collected OOC whereas men showed almost no change. This is likely due to 

the fact that a great part of women’s androgen production occurs in the adrenal gland which is 

under control of the stress hormone ACTH [30]. Almost all male T production, on the other 

hand, occurs in the testes under control of LH. However, serum T levels have previously been 

shown to increase after a match win in soccer and decrease after a loss in both men and women 

[121]. It is possible that larger changes between IC and OOC can be seen if the performance in 

the competition is taken into account. 

The variations women show during the menstrual cycle further complicates interpretation of 

female steroid passports. Women show a larger variation in almost all markers of the steroid 

profile as compared to men and part of this is due to the menstrual cycle. The results from our 

pilot study involving 6 women were in agreement with those of Longhino et al. showing 

maximal E levels by the end of the cycle [128]. Our results in combination with what has 

previously been reported [129] seem to strengthen the theory of a decrease in T/E with 

progressing menstrual cycle. However, the menstrual cycle will likely just be one factor 

increasing the intra-individual variability that is not taken into account in the evaluation of 

passports. The effect of the menstrual cycle on the steroid profile is not enough to justify having 

athletes give out as personal information as the status of their menstrual cycle. In addition, a 

lot of athletes have irregular menses, making this information unreliable. 
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The use of hormonal contraceptives, however, can give patterns on the steroid passports 

similar to micro-doping with T and should be taken into account when evaluating passports. 

When a woman starts taking HC, her E excretion is suppressed leading to an increase in the 

T/E ratio. On the doping control forms, the athletes have to give information about all 

medications taken and hence also contraceptive use. This should be checked by the APMUs 

before suspicion of micro-doping is raised in a female athlete.  

Pregnant women show great differences in their steroid profiles as compared to non-pregnant 

women. Athletes can compete when pregnant and be subject to a doping test, especially in the 

first trimester. The APMUs evaluating the passports do generally not know if the passport they 

are studying belongs to a pregnant woman. However, pregnancy gives a clear pattern to the 

steroid profile and suspicion should be raised by the evaluator. In these cases, the urine should 

be tested for hCG to confirm pregnancy and invalidate this sample for future use in the passport 

if the athlete continues being tested after the pregnancy. 

We have seen that doping with as low as 125 mg T enanthate (i.e. 90 mg bioavailable T) and 

100 mg T gel (approximately 10 mg absorbed), can be detected with the ABP. However, this 

detectability might be an overestimation since the detection required three baseline values 

which are easy to collect for a clinical study but harder in doping testing of athletes. Our 

baseline values were relatively stable, however, in real doping testing, this may not be the case. 

The reasons for this might be that all our baseline samples were collected in the morning and 

the study did not go on for very long, minimizing the effect of diurnal and annual variation. In 

addition, the test subjects were not (as far as we know) subject to any large stressors like 

competitions, and use of drugs was restricted. It is possible that these administrations might not 

have been detected because of larger variation of baseline values in samples from athletes, or 

explained away as natural variation by those evaluating the passports.  

If suspicion of doping is raised from a passport, this alone can be enough to convict someone 

of doping, but only after three independent experts have evaluated the passport as “likely 

doping”. For this to happen, the dose taken has to be large enough to make changes in the 

passports that cannot be explained by any other factors than doping. In reality, most of the 

samples are instead sent to further analysis with IRMS that is used as ultimate proof of doping. 

This method was in our studies relatively sensitive at detecting doping with T. However, we 

used T preparations with a different isotopic composition than what can be seen naturally. 

IRMS is inadequate if the T preparation has an isotopic composition similar to the athlete’s 

endogenous production and preparations like this are known to exist [94-96]. In addition, 

isotopic composition is affected by HC [89, 172], since estrogens and progestogen in oral 

contraceptive pills have delta values around -30‰ [173]. However, the decrease is only around 

−0.70‰ so not enough to give a positive IRMS result.  
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One of the many benefits of the individual approach utilized in the ABP is that the reference 

ranges corrects for excretion differences between individuals after a number of tests. This is 

important as subjects with the double deletion of UGT2B17 excrete much lower T than 

individuals with one or two copies of the gene. The UGT2B17 del/del subject will normally 

not reach a population-based threshold in T or ratios including T, even after doping with T [62]. 

However, as seen in Study VI the vast majority of athletes (at least in Sweden and Norway) are 

only tested once. For evaluation of these results, population-based reference ranges have to be 

used because there is no other option. In these cases, genotyping for UGT2B17 would lead to 

great improvement for detection of EAAS doping [174].  

In doping, specific gravity is used to correct for different dilutions of the urine samples. 

Preliminary results show that this formula is relatively good in the interval mainly used (1.005-

1.035). However, median A concentrations, plotted in Figure 5-5, are not corrected for time of 

day. Time of day can very well be a confounder in this analysis since we have shown that there 

are diurnal variations in steroid levels and urine is normally more concentrated in the morning 

(i.e. higher specific gravity). Until the median concentrations have been corrected for time of 

day, these results should be viewed cautiously. On the other hand, the use of ratios in the ABP 

circumvent the problem of dilution since no adjustment is necessary.  
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7 CONCLUSIONS AND FUTURE CONSIDERATIONS 

Interpretation of steroid passports is a difficult task. We have seen that doping with low doses 

of T enanthate as well as T gel gives atypical passports. However, the steroid profile is sensitive 

to other factors than doping and even natural variations can behave very similar to doping with 

small doses of endogenous steroids. There are many factors to consider when interpreting 

steroid passports and most of them we do not know enough about to say exactly how they affect 

the steroid profile.  The articles in this thesis give some answers but far from all. There is a 

great need for more information for those evaluating profiles.  

Due to the influence of confounding factors, some of them described here, and others still 

unknown, it is difficult to undeniably evaluate a profile as “likely doping” without any 

additional proof or intelligence. To date, the steroid module of the ABP has not been brought 

forward as the only evidence in a case (whereas for the hematological module > 100 such cases 

exist). Therefore, the steroid module is so far mainly used for target testing and increased 

accuracy when selecting samples for IRMS analyses. IRMS really is a remarkable method 

where you can find out the isotopic composition of the molecule and distinguish if it could have 

been produced by the body. It is a great and sensitive method if the isotopic composition of the 

EAAS taken differs from the steroids produced by the body. The problem is that many of them 

do not have a different isotopic composition. Athletes can use these “IRMS-proof” substances 

without fear of testing positive as long as they do not take too much.  

There is a need for more tools to be able to catch doping with endogenous steroids. These tools 

could be new analytical methods – preferably an “uncheatable” confirmation method, addition 

of new sensitive biomarkers, complete mapping of all factors that affect the profile or better, 

all of those things. Some new methods have been proposed, like hydrogen-IRMS [175] and 

direct detection of T esters in blood [176]. We have seen that other biomarkers used in the 

hematological module of the ABP change when EAAS are used, so studying the two modules 

together might improve detectability. In addition, if markers like serum LH and DHT is added 

to a third module, the endocrine module, this can further improve the sensitivity for EAAS 

detection. Additionally, this thesis begins to evaluate some factors affecting the steroid profile 

which can be used for evaluation of steroid passports.  

In spite of the difficulties interpreting steroid passports, the steroidal module has greatly 

improved the detection of EAAS. The purpose of the ban of T is to promote health, fairness, 

and equality for athletes. Even if T doping still likely exists, the doses they can get away with 

are lower than before the steroidal module was implemented. If the implementation of the ABP 

has resulted in lower doses used, this means fewer side effects and therefore better health of 

the athletes, as well as less advantage for those taking EAAS and hence more fairness and 

equality. The ABP has a lot of potential for improvement but is a great step in the right direction 

to fight doping with endogenous steroids. 
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8 POPULÄRVETENSKAPLIG SAMMANFATTNING 

Doping med kroppsegna substanser är svårare att upptäcka än substanser som normalt sett inte 

finns i kroppen. En sådan substans som kan användas i prestationshöjande syfte är det manliga 

könshormonet testosteron. För att upptäcka testosterondoping mäts koncentrationen av 

testosteron och några andra relaterade steroider i urin, dessa värden utgör en steroidprofil. Det 

finns generella gränsvärden som man jämför denna steroidprofil med som är framtagna med 

populationsbaserade studier. Alla är olika och dessa populationsbaserade gränsvärden är 

väldigt generöst tilltagna vilket gör att det är svårt att upptäcka doping med små mängder 

testosteron. 

Skillnaden mellan individer är dock stor och det är därför bättre att använda individuella 

gränsvärden. Så istället har man börjat räkna ut egna gränsvärden för varje utövare baserat på 

tidigare tester och för att gränsvärdena ska bli så bra som möjligt behöver idrottaren testas minst 

tre gånger. Sedan 2014 läggs en idrottares alla steroidprofiler in i ett biologiskt pass med vilka 

ett datorprogram gör grafer med individuella gränsvärden som programmet har räknat ut. Om 

en steroidprofil går utanför de individuella gränsvärdena tolkas resultatet av en expert som 

avgör om doping kan vara anledningen till avvikelsen.  

 

Bilden ovan visar ett exempel på hur en graf i det biologiska passet kan se ut. Grafen beskriver den viktigaste 

markören för detektion av testosteron, T/E kvoten. Den här personen har testats 7 gånger och i början (prov 1-3 på 

x-axeln) är värdena stabila, sen händer det något och individens provresultat går utanför gränsvärdena och det ger 

en avvikelse. I det här fallet avviker provet för att vi, i en studie, gett denna person en dos testosterongel. Gelen 

smörjdes in mellan det tredje och fjärde urinprovet och prov 4-7 samlades in under nästföljande två dagar. 

 

 

Gränsvärden som hela 

tiden anpassar sig 

Provresultat 

Avvikelse 
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Det biologiska passet är dock inte helt lätt att tolka för de finns stora spridningar i 

steroidprofilen även inom en individ och anledningar andra än doping som kan ge avvikelser i 

passet. I den här avhandlingen har vi studerat hur steroidprofilen varierar normalt och efter 

intag av läkemedel, både dopingklassade och andra. 

Doping med två olika testosteronpreparat, ett som injektion och ett i gel-form, gick att upptäcka 

hos män med det biologiska passet. När vi istället jämförde med de populationsbaserade 

gränsvärdena var det många som inte gick utanför gränserna. De här studierna visar att 

införandet av det biologiska passet har förbättrat möjligheterna att upptäcka doping med 

testosteron.  

Kvinnors steroidpass är mer svårtolkade än mäns. Kvinnors nivåer av testosteron är ibland för 

låga för att kunna mätas med dagens analysmetoder, vilket inte nödvändigtvis betyder att de 

inte har dopat sig. Kvinnor har också generellt större naturlig variation av steroidnivåer än män. 

Bland annat så fann vi att en del av variationen hos kvinnor beror på menscykeln. Kvinnor hade 

också större inverkan av stress (om provet är taget t.ex. under tävling), tid på dygnet och årstid. 

När en kvinna blir gravid så ändras också steroidprofilen ordentligt, men sådana uppgifter är 

idag inte tillgängliga för dem som tolkar passen.  

En annat viktigt fynd vi gjorde i våra studier var att p-piller påverkar en av de viktigaste 

markörerna i steroidpasset och gör det på samma sätt som doping med låga doser testosteron. 

Vidare analyser av provet kommer att visa att avvikelser på grund av p-piller inte beror på intag 

av steroider, så ingen kommer att bli tagen för doping efter intag av p-piller men de vidare 

analyserna är dyra och tidskrävande, resurser som borde spenderas på annat.  

Ett avvikande steroidpass kan vara tillräckligt med bevis för doping men nästan alltid krävs det 

att man skickar urinprovet på vidare analyser för att samla tillräckligt med bevis. Den metod 

som används för att bevisa intag av testosteron förkortas IRMS och jämför sammansättningen 

av isotoper i testosteronmolekylen. I våra studier visade sig IRMS vara en bra metod men inte 

lika känslig som steroidpasset. Tyvärr finns det idag dopingpreparat som är ”IRMS-säkra” där 

testosteron har framställts på ett sätt som liknar det vi producerar själva. Dessa preparat 

kommer inte att ge utslag i IRMS testerna och därför skulle det vara bra om steroidpasset självt 

kunde utgöra tillräckligt med bevis. 

Sammanfattningsvis så är steroidpasset den bästa metoden för att upptäcka doping med 

testosteron, men det är svårt att bevisa doping enbart med steroidpasset då det är svårt att se 

skillnad på naturliga variationer och doping med låga doser. Det finns dessutom flera andra 

faktorer som kan påverka steroidpasset och det skulle behövas en ordentlig kartläggning av alla 

dessa faktorer för att kunna underlätta för dem som utvärderar passen.  
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